

Plan for HCAL Calibration/Monitoring

By HCAL/JetMET group

Shuichi Kunori U. of Maryland 25-Sep-2001

General Plan

Following procedure described in HCAL TDR. (sk's talk on 26-Sep-2000)

 http://home.fnal.gov/~kunori/cms/meetings/000 926-cmsweek/shuichi/hcal-calib-0009.ppt

Three (+) Tasks

- HCAL Calibration
- Synchronization (?)
- Monitoring on those through life of exp.
- + Jet/MET energy scale

Calibration & Monitoring Group in HCAL/JetMET group

Group leader- Olga Kodolova

Data Flow

>>> <u>front end</u> <<<

```
Scint. Lights
->Tile->Fiber1&2->OptCable
->HPD->Amp->ADC
Charge (for 5-10xings)
HTR (ch) ->(L1Path)
->(DAQPath)
```

>>> <u>L1Path</u> <<<

```
E<sub>T</sub>(L1Primitive: 8bits:non-linear)
->L1 LUT (ch)
E<sub>T</sub>(4x4 HcTower: 8bits:linear)
->L1Calo
E<sub>T</sub>(L1jets),Et(L1tau),Et(L1MET)
->L1CaloGlobal(Threshold (obj))
->L1Global
L1Trigger
```

>>> after <u>DAQPath</u> <<<

```
->ReadoutAnalyzer (ch)

E<sub>T</sub>(channel)
->TowerCreator

E<sub>T</sub>(Ec+Hc Tower)
->Jet/MET/tauReco

E<sub>T</sub>(jetR),Et(tauR),Et(METR)
->EtCaloCorrection (obj)
(corr. for linearlity)

E<sub>T</sub>(JetC),Et(tauC),Et(METC)
->EtPhysCorrection (obj)
(corr. for out-of-cone)

E<sub>T</sub>(Parton)
```

Calibration/correction
(ch) - channel by channel
(obj) - phys. Obj, (jet, tau, MET)

Tools

A) Megatile scanner:

- Co⁶⁰ gamma source
- each tile: light yield
- during construction all tiles

B) Moving radio active source:

- Co⁶⁰ gamma source
- full chain: gain
- during CMS-open (manual) all tiles
- during off beam time (remote) tiles in layer 0 & 9

C) UV Laser:

- full chain: timing, gain-change
- during off beam time tiles in layer 0 & 9 all RBX

D) Blue LED:

- timing, gain change
- during the off beam time all RBX

E) Test beam

- normalization between GeV vs. ADC vs. A,B,C,D
- ratios: elec/pion, muon/pion
- pulse shape/time structure
- before assembly a few wedges

F) Physics events

- mip signal, link to HO muon
- calo energy scale (e/pi) charged hadron
- physics energy scale
 photon+jet balancing
 Z+jet balancing
 di-jets balancing
 di-jet mass
 W->jj in top decay
- >> non-linear response
- >> pile-up effect

Scenario (HB/HE)

(same to HF)

1) Before megatile insertion

- megatile scanner: all tiles- moving wire source: all tiles

2.1) After megatile insertion

- moving wire source: all tiles / 2 layer

- UV laser: 2 layers/wedge

2.2) After megatile insertion

- test beam: a few wedges.

Absolute calib.
Accuracy of 2%
for single particle

3) Before closing the CMS

moving wire source: all tilesUV laser & blue LED: all RBX

(do 3, about once/year)

4) Beam off times

- moving wire source: 2layer/wedge

- UV laser: 2 layer/wedge

- UV laser & blue LED: all RBX

5) Beam on (in situ)

 Monitor for change with time Accuracy < 1%

once/year

a few times/day (?)

Scenario toward final ET scale

- A) No special event trigger during beam on. (except for monitor runs)
- B) Min-bias and QCD events will be used to monitor the calorimeter through runs.
- C) Four steps to determine E_T scale after the first run starts.
 - 1. Test beam data and wire source (plus MC) gives initial scale.
 - 2. In 1~3 months, improved E_T scale by physics events.
 - requires very intensive data analyses.

How soon data will be available for analyses? How soon ECAL and MUON/TRACKER will give us calibrated E_{τ} ?

- 3. Development of algorithm for more improved E_T scale.
 - use of full shower shape, i.e. transverse shower shape in ECAL crystals as well as longitudinal shower shape.
 - use of tracks.

How easy to access to full detector information?

- 4. Apply the new algorithm for final results.
 - re-processing (some) events

 How easy to reprocess events?

Tasks / Groups

Calibration Tasks

- Defining data
- Defining repository/database
- Collecting data
- Checking quality of data
- Production of calibration coefficient
- Define/implement ORCA interface
- Verify calibration

Three groups are involved.

- JetMET C & M group
- DCS group
- Hardware groups (+ ECAL, Tracker)

JetMET C&M Organization (O.Kodolova)

Test Beam and initial energy scale

Requirement for beam test / analysis / source

Response equalization (Uniformity)

Source/min-bias events

Time Dependence

Source/min-bias/laser/LED

Data collection and maintenance

Data type / Data format / file system / database

Software Tools

ORCA Interface

JetMET energy scale

MC study / In-situ calibration

Synchronization

A.Gribushin H.Budd (HE) (HO)

A.Krokhotine K.Teplov ???

A.Yershov (HB) (HE) (HO)

A.Oulianov T.Kramer

A.Oulianov S.Abdullin

I.Vardanyan A.Kokhotine P.Hidas V.Konnopianikov

???

Relation to Other Groups

Short Term Plan

26-Sep-01 (Wed) 11:00-12:30

- A.Oulianov Proposition on HCAL database
- T.Kramer HCAL calibration web page
- P.deBarbaro Data from bld 186

CPT Week (5-9. Nov'01)

- Decision on organization and more planning
- Discussion on

Requirements for Test Beam

Define data type / repository

CMS Week (5 Dec'01)

Continuation of discussion

CMS Week (Mar'02)

→ Decision on above

Need.

Good test beam data

- Final Electronics
 - → measure time structure
- Low energy.
- ECAL
- B-field
 - → hadron shower physics

Additional slides

HCAL Organization

6 March 2001: Draft 30 Jan 01

HCAL Timing Calibration

2) Synchronization (global)

L1 data, L1 accept (pointer to pipeline), 40MHz clock

Synchronization (Global)

Correction for variation in

- Data cable length
- TTC distribution

Adjustable knobs

- QIE (1ns step)
- HTR timing to L1 regional crate
- L1 accept pointer to pipeline

Use trigger 1 crossing after the abort gap.

- read out all channels, 10 times/channel
- histograming to find right bucket
- adjust L1 pointer to correct bucket.

about O(weeks) to check all channels at 10E32